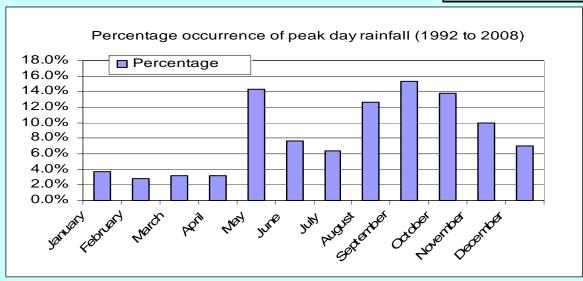
FLOOD PLAIN MODELING: A TOOL FOR SUSTAINABLE INFRASTRUCTURE DEVELOPMENT AND PLANNING

Carlnenus Johnson and Christopher Burgess

JIE Caribbean Infrastructure Conference, September 22, 2011

Outline

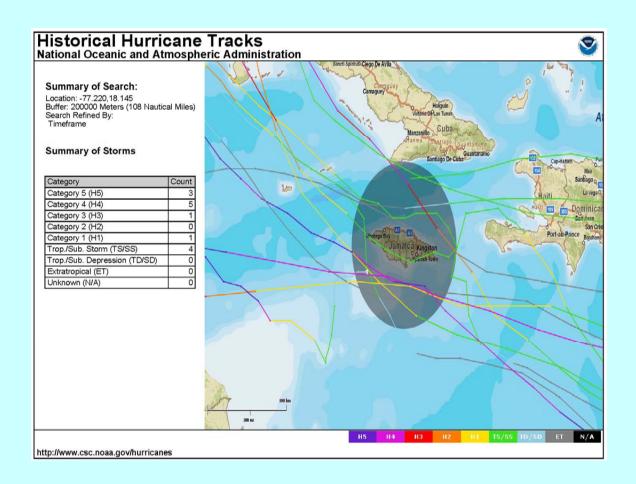
- 1. Meteorology
- 2. The Issues
- 3. Development Planning
- 4. Setting Elevations of Critical facilities and minimum floor levels
- 5. Potential development Impacts
- 6. Assessing Infrastructure Needs
- 7. Summary and Recommendations



There are two distinct rainy seasons

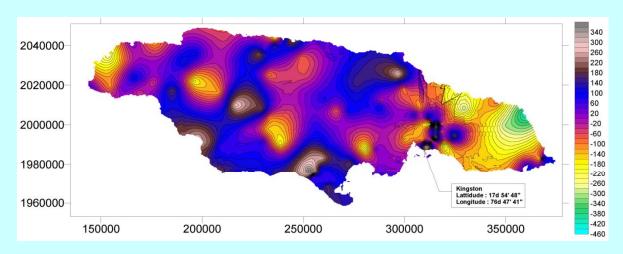
- 1) May June (early)
- 2) September November (late)

Month	Percentage occurrence of peak day rainfall (1992 to 2008)	Wet season summary
January	3.7%	
February	2.9%	
March	3.2%	
April	3.2%	
May	14.3%	
June	7.7%	22.0%
July	6.4%	
August	12.6%	
September	15.3%	
October	13.8%	
November	10.0%	39.0%
December	7.0%	



Rainfall and Hurricanes:

- Hurricane season: June 1 to November 30
- •Fourteen of these systems have passed within 100km of Jamaica from 2001 to 2010
- •Hurricane and tropical systems have resulted in major flooding events. Such as:
 - May 22 to June 7, 2002 (Weather system)
 - September 2002 (Hurricane Isidore and Tropical Storm Lili)
 - September 10 to 12, 2004 (Hurricane Ivan)
 - October 15 to 18, 2005 (Hurricane Wilma)
 - August 19, 2007 (Hurricane Dean)
 - August, 2008 (Hurricane Gustav)
 - October, 2010 (Tropical Storm Nicole)



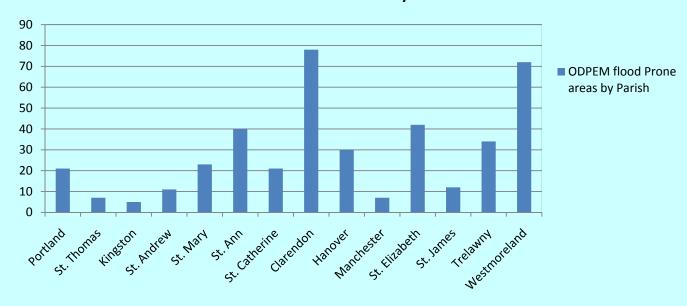
Climate Change:

•Events are becoming more intense (analysis of 1930-1980 rainfall data in comparison to 1992 to 2008). Therefore more flooding likely

Difference (mm per 24 hours) between the 1930-1988 and 1992 to 2008 24-hours Extreme rainfall intensities for the 100 Year Return Period Event

Minimum recommended increase in intensity per decade for 24 hour extremes

	Return Period						
	2	5	10	25	50	100	
Increase per decade	5.6%	2.7%	1.2%	1.0%	1.0%	0.7%	



Flood Prone and Historical Flooding Areas:

A total of 403 such areas are highlighted by ODPEM

ODPEM flood Prone areas by Parish

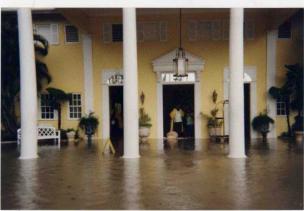
Flood Prone and Historical Flooding Areas:

• Flooding of developments under construction



Flood Prone and Historical Flooding Areas:

Flooding of newly constructed developments

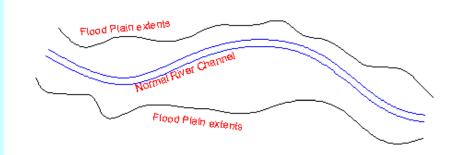


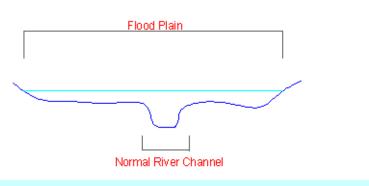
Flood Prone and Historical Flooding Areas:

Flooding of existing developments

Flood Prone and Historical Flooding Areas:

Flooding of existing towns

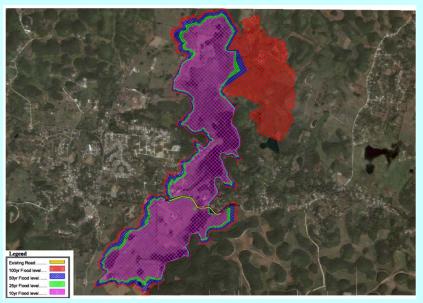




FLOOD PLAIN MAPPING

Definition: Flood Plain

Low plain adjacent to a river that is subject to flooding



FLOOD PLAIN MAPPING

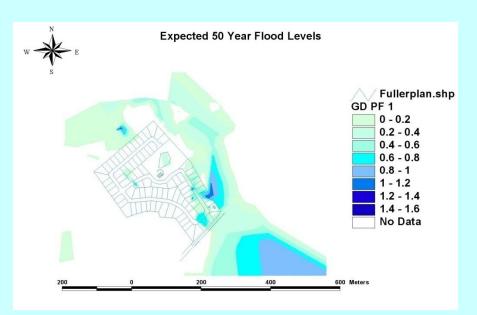
Definition: Flood Plain Mapping

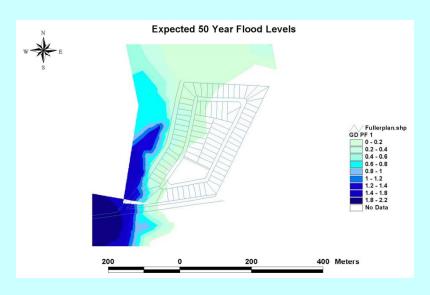
A combination of satellite imageries or planimetric survey maps, elevation/contour data and flood information determined by use of hydraulic models.

FLOOD PLAIN MAPPING

Definition: Flood Plain Mapping

They will typically have the following information:


- the location of the main flow path
- surrounding features or developments (from maps or imagery)
- sometimes elevation contours
- flood levels and floodplain limits for the n-year flood)



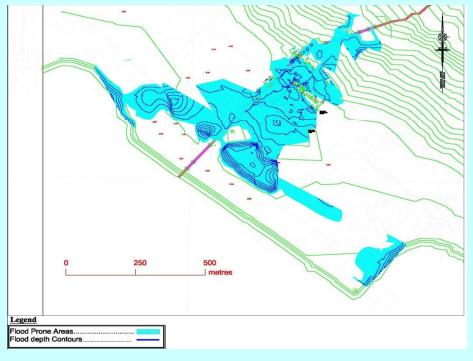
DEVELOPMENT PLANNING

Identifying flood prone areas and suitable drainage solutions prior to development of housing infrastructures.

DEVELOPMENT PLANNING

Identifying flood prone areas and recommend suitable solutions/mitigation measure prior to development. These might include:

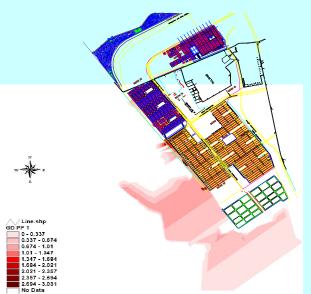
- Abandoning flood prone lots
- •Use area for purposes that will have low consequences associated with being flooded. Such as:
 - playing field/open areas
 - Farm lots
- Raise level of houses/lots (in covenants on titles)
- Drainage infrastructure
- Berms/Dykes

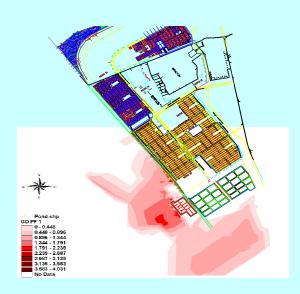


MINIMUM FLOOR LEVELS

Citing of structures of importance and setting of critical infrastructure and floor levels.

- Elevate the critical infrastructures above the
 50 or 100 yr flood levels
- Rest of site raised above the 25yr levels. but kept below 50yr.





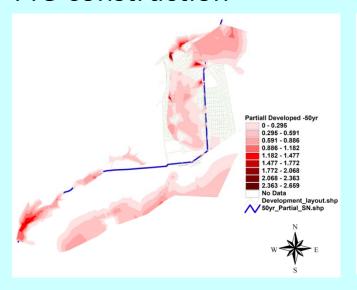
DEVELOPMENT IMPACTS

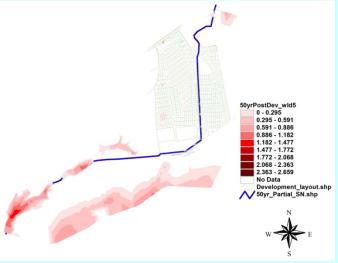
Identifying possible flooding impacts when implementing infrastructures

Pre-construction Post-Construction

Outcome

WWTP will not impact adjacent development.




ASSESSING INFRASTRUCTURE NEEDS

Assessment of existing flood prone areas and implementation of suitable drainage solutions

Pre-construction

Post-Construction

Outcome

Proposed deep drains and dykes can minimize flooding.

CONCLUSION

- Flooding is usually observed in Hurricane season. Climate change is placing additional pressures on our local hydrology, with increases in rainfall intensity being observed.
- Several new sub-divisions have experienced flooding for rainfall events that are less severe than the 50 year return period.
- Flood plain mapping is a useful tool for determining the vulnerability and risks of developments to flooding based on their location.
- The risks can easily be identified and used for planning purposes.

 Development Planning

RECOMMENDATIONS

- Flood mapping should be used by planning authorities to:
 - Identify vulnerable areas
 - Set minimum floor levels
 - Inform developers and regulators were to avoid placing critical infrastructure in development projects
 - To confirm suitability and sustainability under new hydrological regimes of climate change, where more intense rainfall events are anticipated.

RECOMMENDATIONS

- Commission island wide flood maps:
 - Flood recurrence intervals for 2, 5, 10, 25, 50 and 100 yr return periods.
 - Vulnerable areas.
 - Consider Climate change impacts on intensities over a 100 year planning horizon as an adaptation measure

THE END

Questions?

